对金刚石薄膜和纳米金刚石表面改性,研究者尝试了多种方法,通过在金刚石表面引入不同的官能团来实现,如卤素、氨基、含氧基(羰基、羧基)等官能团。在此基础上,可将有生物活性的大分子、聚合物基质等直接连接到金刚石上。
金刚石在引入其他官能团之前,需先在其表面引入氢终端,因为有氢为终端的表面较容易导入活性基团,从而比较容易实现金刚石表面的功能化。对于金刚石薄膜,一般采用在氢气氛围下加热到800-1000℃,或使用氢气等离子体处理的方法,使其表面还原成以氢为终端的均一洁净的反应表面。对于纳米金刚石,其表面携带的含氧基团有羟基、羧基、醚键、羰基等,通过还原反应可得到表面含氢的单一官能团。在此基础上,再进一步对其功能化。这些方法主要包括(1)化学改性;(2)光化学改性;(3)电化学改性;(4)纳米金属及金属氧化物改性。
(1)化学改性
采用氧化性酸溶液(如硝酸、铬酸、芬顿试剂等)处理金刚石,既除去了金刚石表面的杂质(石墨和金属),又使金刚石表面形成C-O表面官能团.金刚石(100)表面主要形成羰基和醚基官能团,金刚石(111)表面主要形成羟基官能团。采用过氧化氢、食人鱼溶液(硫酸和过氧化氢的混合液)可得到羧酸化的纳米金刚石。在250-400℃下,氯取代金刚石薄膜表面的氢,金刚石薄膜表面形成了反应活性点,很容易与亲核试剂(如H2O,NH3,CHF)反应。
(2)光化学改性
典型的光化学改性技术有2种:①在紫外光照下,烯烃与金刚石表面发生加成反应,产生碳-碳键;②采用各种类型的有机过氧化物,引发自由基反应。光化学方法可以使金刚石表面连接烷基链、羧酸或伯胺基团。YANG等使用第2种方法将DNA链连接到金刚石表面,DNA链的连接稳定性很好。紫外照明也可用于激活自由基型反应,如MILLER等利用此技术使金刚石表面氯化,实现了金刚石表面的胺或硫醇化;SMENTKOWSKI等通过光化学改性,在金刚石薄膜表面形成非常稳定的C-F终端。
(3)电化学改性
电化学改性方法包括:①在酸或碱溶液里进行阳极极化;②在电解质溶液中加入芳族重氮盐,在金刚石表面引入芳香基团。与化学改性氧化法相比,电化学改性法可以在大范围内迅速实现氧化;与等离子体氧化法相比,氧化过程最容易实现,因为它不涉及高能量,可避免金刚石表面的热损伤。通过电化学氧化法,使金刚石表面形成C=O键,将其制备成金刚石薄膜电极,可提高检测精度及选择性。金刚石薄膜电极在电分析、电化学降解有机污染物方面已得到应用。
(4)金属及金属氧化物改性
通过热沉积法或恒电位电沉积法在金刚石表面沉积金属粒子(如金、铜、银、镍、铂、钌、钯),可制备纳米电子器件,应用在催化反应、疾病诊断和治疗、生物传感等领域。例如,金刚石/铂复合电极不仅具有好的催化活性,而且具有极好的耐腐蚀性和稳定性,可应用于电化学能量转换装置上(如燃料电池);将纳米金电沉积到金刚石表面制得薄膜电极,该电极在酸性溶液中对O2还原反应具有催化能力,催化效率是相同条件下金电极的20倍;铜和镍沉积到纳米金刚石表面后,提高了葡萄糖的电催化活性;二氧化钌或水合氧化钴沉积到金刚石表面制成催化电极,可提高二氧化碳还原成一氧化碳的还原产率。这样,既可以减少二氧化碳排放,又为使用二氧化碳作为化工合成原料提供技术支持。